Refine Your Search

Topic

Author

Search Results

Journal Article

Superelement, Component Mode Synthesis, and Automated Multilevel Substructuring for Rapid Vehicle Development

2008-04-14
2008-01-0287
This paper presents the new techniques/methods being used for the rapid vehicle development and system level performance assessment. It consists of two parts: the first part presents the automated multilevel substructuring (AMLS) technique, which greatly reduces the computational demands of larger finite element models with millions of degrees of freedom(DOF) and extends the capabilities to higher frequencies and higher level of accuracy; the second part is on the superelement in conjunction with the Component Mode Synthesis (CMS) and also Automated Component Mode Synthesis (ACMS) techniques. In superelement, a full vehicle model is divided into components such as Body-in-white, Front cradle/chassis, Rear cradle/chassis, Exhaust, Engine, Transmission, Driveline, Front suspension, Rear suspension, Brake, Seats, Instrument panel, Steering system, tires, etc. with each piece represented by reduced stiffness, mass, and damping matrices.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Simulating Neck Injury in Frontal Impact using LS-DYNA

2007-04-16
2007-01-0677
Neck injury assessment is part of the FMVSS208 requirements. Hardware tests are often conducted to validate whether the vehicle safety system meets the requirements. This paper presents a full vehicle finite element model using LS-DYNA, including structural components, restraint system components, and dummies. In the case of a frontal impact at 30deg angle, in the areas of neck compression, neck extension and neck kinematics, it is demonstrated that a good correlation is achieved between the response of a FE dummy in the model and those of ATDs in the physical hardware tests. It is concluded that the math tool may be applied to comprehend test and design variations that may arise throughout a vehicle development lifecycle and to help develop a vehicle restraint system.
Technical Paper

Global Research and Development: GM Case Study India

2006-10-16
2006-21-0086
Global R&D is in its infant stages. Senior executives and their organizations need to develop deeper understanding of the opportunities and challenges of off-shoring R&D. While global pressure will continue to mount to deliver more value at ever lower cost, the labor cost arbitrage break in countries such as China or India will not last forever. The fundamental challenge is to use the current low-cost advantage to build rapidly a sustainable technology, product and service advantage. This requires the development of a balanced local growth strategy that is well adapted to the regional strengths while ensuring a seamless global integration of people, organizations, and processes. This paper focuses on the build-up of GM's R&D activities in India with an emphasis on research in one of the key thrust areas in GM R&D - Automotive Electronics, Controls, and Software. Lessons learned apply also to development.
Technical Paper

Validated Specification through Simulation for Complex Electronic Modules

2006-04-03
2006-01-0171
Consumer expectations for automated vehicle operations such as automatic locking, remote ignition control, navigation, and entertainment are primary drivers for the increasing complexity of embedded automotive electronics modules. The prevalent practice for procuring these modules is to develop a written behavioral specification that is then used by an outside supplier to build and test the module. Validation test plans are written separately based on an understanding of the requirements. The challenges posed by the current practice include the inability to completely specify the expected behavior in a timely manner, the need to balance the design between low cost and new features demanded by the customer, and ensuring that the product exactly implements the specified behavior. Moreover, vehicle manufacturers desire the ability to explore sensitivity of specifications by identifying constraints on the system and assessing the product for ease of implementation.
Technical Paper

Overhead Sliding Video Screen Monitor

2006-04-03
2006-01-1486
A novel longitudinally sliding overhead video screen monitor was developed to address consumer needs for vehicles equipped with rear seat entertainment and long length sunroofs. Long length sunroof openings in vehicles are causing engineers to mount video screen monitors in locations other than the overhead. Typically, they are mounted on the floor console or on the back of front seat head restraints. Floor console mounted video screen monitors generally do not provide a comfortable viewing distance or angle for second and third row occupants. Head restraint mounted video monitors cause issues with seat shake and two monitors adds to the vehicle cost unnecessarily. The mountable sliding video monitor assembly comprises of a video display screen, brackets for mounting the monitor, a pair of tracks that are movable with respect to each other, a series of ball bearings, and a roof mounting bracket. The inner main track is adapted for mounting the pair of tracks to the vehicle.
Technical Paper

Analytical Approach to the Robust Design of Dimensional Datum Schemes

2006-04-03
2006-01-0500
This paper presents the fundamental principles of variation analysis and robust design for dimensional datum schemes. The kinematics equations for rigid body motions are simplified through linearization. The simplified formulations explicitly relate the dimensional deviations of a rigid part with its datum scheme configuration and dimensional variations at datum target points. This simplified approach can be used with either the first order Taylor series approximation or Monte Carlo simulation to study the statistical characteristics of datum scheme variations. A headlamp case study is presented that shows the application procedures and demonstrates that both Taylor series and Monte Carlo methods generate comparable results, but the former offers more efficiency and convenience due to its close form formulation. This approach has found many applications especially in on-site problem solving and fast what-if studies.
Technical Paper

High Performance Vehicle Chassis Structure for NVH Reduction

2006-04-03
2006-01-0708
The main objective of this paper was to determine if the vehicle performance can be maintained with a reduced mass cradle structure. Aluminum and magnesium cradles were compared with the baseline steel cradle. First, the steel chassis alone is analyzed with the refined finite element model and validated with experimental test data for the frequencies, normal modes, stiffnesses and the drive-point mobilities at various attachment mount/bushing locations. The superelement method in conjunction with the component mode synthesis (CMS) technique was used for each component of the vehicle such as Body-In-White, Instrument Panel, Steering Column Housing & Wheel, Seats, Cradles, CRFM, etc. After assemblage of all the superelements, analysis was carried out by changing the front and rear cradle gauges and the material properties. The drive-point mobility response was computed at various locations and the noise (sound pressure) level was calculated at the driver and passenger ears.
Technical Paper

A Subsystem Crash Test Methodology for Retention of Convenience Organizer Equipment System in Rear Impact

2005-04-11
2005-01-0735
Any equipment system or vehicle component like the Convenience Organizer storage system needs to be retained within the cargo compartment without intruding into the passenger compartment for occupant safety during a high speed impact. This paper outlines a test method to evaluate the retention of such a system in a rear impact environment. The method utilizes a low speed barrier to simulate a high speed RMB (Rear Moving Barrier) impact. The content of the low speed RMB impact test setup was developed utilizing DYNA3D analytical simulation results from a full vehicle model subjected to high-speed RMB impact. The retention of the equipment developed through this test method was confirmed on a full scale rear impact test.
Technical Paper

Optimum Customer Based Specification: Part of DFSS Case Study

2005-04-11
2005-01-1209
Maximizing customer satisfaction is one key factor for marketing success. It is crucial to have engineering specifications reflecting customer expectations. This paper describes the strategy and methodologies used to generate optimum engineering specification in a case study. This study is part of the DFSS project, which focused on electrical delay time prior to engine crank.
Technical Paper

Design of a Full-Scale Impact System for Analysis of Vehicle Pedestrian Collisions

2005-04-11
2005-01-1875
The complexity of vehicle-pedestrian collisions necessitates extensive validation of pedestrian computational models. While body components can be individually simulated, overall validation of human pedestrian models requires full-scale testing with post mortem human surrogates (PMHS). This paper presents the development of a full-scale pedestrian impact test plan and experimental design that will be used to perform PMHS tests to validate human pedestrian models. The test plan and experimental design is developed based on the analysis of a combination of literature review, multi-body modeling, and epidemiologic studies. The proposed system has proven effective in testing an anthropometrically correct rescue dummy in multiple instances. The success of these tests suggests the potential for success in a full-scale pedestrian impact test using a PMHS.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

A Novel Design Concept of a Lateral Sliding Bucket Seat on Roller Mechanisms

2003-10-27
2003-01-2753
A novel lateral sliding vehicle bucket seat was developed to address consumer needs for improved facile access to third row seats in minivans and sport utility vehicles. The concept provides for a second row bucket seat to slide laterally across a vehicle floor by roller mechanisms that roll across steel rails that transverse the vehicle floor. The system consists of two T-section type steel rails mounted parallel to each other at a distance equal to the seat riser support attachment features. The seat risers contain a roller mechanism that enables contact with the cylindrical portion of the steel rails. Each steel rail contains rectangular openings spaced appropriately to allow the seat latching mechanisms to engage securely. The seat riser supports at the rear include a releasable clamping mechanism hook that engages and disengages into the rectangular openings of the steel rails.
Technical Paper

Finite Element Simulation Study of a Frontal Driver Airbag Deployment for Out-Of-Position Situations

2003-10-27
2003-22-0011
As more and more active restraint devices are added by vehicle manufacturers for occupant protection, the history of driver frontal airbags illustrates that the design performance of such devices for in-position (IP) occupants often have to be limited in order to reduce their aggressiveness for out-of-position (OOP) situations. As of today, a limited number of publications dealing with FE simulation of airbag deployment for OOP are available. The objective of our study was to evaluate the feasibility of airbag deployment simulations based on an extensive set of well-defined physical test matrix. A driver frontal airbag was chosen (European mid-size car sample) for this study. It was deployed against a force plate (14 tests in a total of 6 configurations), and used with Hybrid III 50th percentile dummy (HIII) in OOP tests (6 tests, 4 configurations). Special attention was paid to control the boundary conditions used in experiments in order to improve the modelling process.
Technical Paper

Evaluation of Different Countermeasures and Packaging Limits for the FMVSS201U

2003-03-03
2003-01-0329
Different countermeasure designs for reducing the HIC (d) and to comply with FMVSS201U have been evaluated in many component-level studies by suppliers and OEMs. This study presents guidelines to support future countermeasure and interior designs. FMVSS201U has changed the way OEMs design interiors of the vehicles today. Most recently, much more work is being done to find ways to design interiors of the vehicles that comply with FMVSS201U while keeping the interiors aesthetically pleasing, attaining driver comfort and meeting driver visibility requirements. Introduction of side-rail airbags has further affected countermeasure design and packaging. This study focuses on several countermeasure designs in the side-rail region as used in a mid-sized vehicle implemented to meet FMVSS201U requirements and their efficiency with respect to Head Injury Criterion (HIC) reduction given a fixed packaging space.
Technical Paper

Enhancing the Design of the Chevy Avalanche through Human Factors

2003-03-03
2003-01-0120
This paper describes the Human Factors (HF) research undertaken to support the new midgate incorporated in the Chevrolet Avalanche. This concept had several unique user interfaces not previously used in vehicle design and required several Human Factors studies to assess the usability of this concept. In addition, this paper discusses developing a protocol for conducting iterative Human Factors studies to assess the usability impact of product changes within the strict production program time lines.
Technical Paper

Comparison of Thoracic Injury Risk in Frontal Car Crashes for Occupant Restrained without Belt Load Limiters and Those Restrained with 6 kN and 4 kN Belt Load Limiters

2001-11-01
2001-22-0009
In France, as in other countries, accident research studies show that a large proportion of restrained occupants who sustain severe or fatal injuries are involved in frontal impacts (65% and 50%, respectively). In severe frontal impacts with restrained occupants and where intrusion is not preponderant, the oldest occupants very often sustain severe thoracic injuries due to the conventional seat belt. As we have been observing over the last years, we will expect in the coming years developments which include more solidly-built cars, as offset crash test procedures are widely used to evaluate the passive safety of production vehicles. The reduction of intrusion for the most severe frontal impacts, through optimization of car deformation, usually translates into an increase in restraint forces and hence thoracic injury risk with a conventional retractor seat belt for a given impact severity.
Technical Paper

Development and Field Performance of Indy Race Car Head Impact Padding

2001-11-01
2001-22-0019
The close-fitting cockpit of the modern Indy car single seat race car has the potential to provide a high level of head and neck impact protection in rear and side impacts. Crash investigation has shown that a wide variety of materials have been used as the padding for these cockpits and, as a result, produced varying outcomes in crashes. Additionally, these pads have not always been positioned for optimal performance. The purpose of this study was to investigate the head impact performance of a variety of energy-absorbing padding materials under impact conditions typical of Indy car rear impacts and to identify superior materials and methods of improving their performance as race car head pads. An extensive series of tests with the helmeted Hybrid III test dummy head and neck on an impact mini-sled was conducted to explore head padding concepts.
Technical Paper

Vehicle Accessibility

2001-10-01
2001-01-3431
This paper presents an experimental protocol allowing to measure car accessibility motions and to evaluate associated discomfort feelings. The aim of these different approaches is firstly to acquire knowledge about motor strategies and secondly to be able to animate a numerical ergonomic mannequin. A video optoelectronic system has been used to acquire 3D movements data realized with 4 half french car units. A 3D digitizer has also been employed to measure static postures allowing to size and animate our numerical mannequin. Five voluntary subjects have participated to pre-experiments. Collected data have undergone several examination processes in order to prepare the mannequin animation. In other terms, kinematic analysis of body segments will allow to understand and to characterize ingress and egress movements from vehicles.
Technical Paper

Forward Collision Warning: Preliminary Requirements for Crash Alert Timing

2001-03-05
2001-01-0462
Forward collision warning (FCW) systems are intended to provide drivers with crash alerts to help them avoid or mitigate rear-end crashes. To facilitate successful deployment of FCW systems, the Ford-GM Crash Avoidance Metrics Partnership (CAMP) developed preliminary minimum functional requirements for FCW systems implemented on light vehicles (passenger cars, light trucks, and vans). This paper summarizes one aspect of the CAMP results: minimum requirements and recommendations for when to present rear-end crash alerts to the driver. These requirements are valid over a set of kinematic conditions that are described, and assume successful tracking and identification of a legitimate crash threat. The results are based on extensive closed-course human factors testing that studied drivers' last-second braking preferences and capabilities. The paper reviews the human factors testing, modeling of results, and the computation of FCW crash alert timing requirements and recommendations.
X